Computer Science 294 Lecture 5 Notes

Daniel Raban

January 31, 2023

1 Isoperimetric Inequality, Noise Stability, and Arrow's Theorem

1.1 Recap: Influence of voters and total influence

For a boolean function $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}^{n}$ and $i \in[n]$, we defined the influence of voter i to be

$$
\operatorname{Inf}_{i}(f)=\mathbb{P}_{X \sim\{ \pm 1\}^{n}}\left(f(X) \neq f\left(X^{\oplus i}\right)\right)
$$

More generally, for $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$, we have

$$
\operatorname{Inf}_{i}(f)=\mathbb{E}_{X}\left[\left(\frac{f\left(X^{i \mapsto 1}\right)-f\left(X^{i \mapsto-1}\right)}{2}\right)^{2}\right]
$$

We saw that $\operatorname{Inf}_{i}(f)=\sum_{S \ni i} \widehat{f}(X)^{2}$ and multiple interpretations of the total influence:

$$
\begin{aligned}
& \mathbb{I}(f)=\sum_{i=1}^{n} \operatorname{Inf}_{i}(f)=\sum_{i=1}^{n} \sum_{S \ni i} \widehat{f}(S)^{2}=\sum_{S \subseteq[n]} \widehat{f}(S)^{2} \cdot|S|, \\
& \mathbb{I}(f)= \# \text { of sensitive edges } \\
& 2^{n-1}
\end{aligned}
$$

Exercise 1.1. If $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ and for all sets S of size $>1 \widehat{f}(S)=0$, then f is either constant, dictator, or anti-dictator.

1.2 Poincare inequality and isoperimetric inequalities

Theorem 1.1 (Poincaré Inequality). For any $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$,

$$
\mathbb{I}(f) \geq \operatorname{Var}(f)
$$

Proof.

$$
\begin{aligned}
\mathbb{I}(f) & =\sum_{S \subseteq[n]} \widehat{f}(S)^{2}|S| \\
& =\sum_{\varnothing \neq S \subseteq[n] \widehat{f}(S)^{2} \cdot|S|} \varnothing \neq \sum_{\varnothing \neq S \subseteq[n]} \widehat{f}(S)^{2} \cdot 1 \\
& =\operatorname{Var}(f) .
\end{aligned}
$$

Remark 1.1. Equality occurs if and only if for all sets of size $>1, \widehat{f}(S)=0$. So by the exercise, this is exactly when f is a constant, dictator, or anti-dictator function.

Here is an interpretation of this as an isoperimetric inequality. Let $A=\left\{x \in\{ \pm 1\}^{n}\right.$: $f(x)=1\}$ and $B=\left\{x \in\{ \pm 1\}^{n}: f(x)=-1\right\}$. The set of sensitive edges is the cut

$$
E(A, \bar{A})=\{(u, v) \in E: u \in A, v \in \bar{A}\} .
$$

An isoperimetric inequality relates the size of A to the size of the cut $E(A, \bar{A})$.
Corollary 1.1 (isoperimetric inequality). If $|A|=\alpha \cdot 2^{n}$, then

$$
|E(A, \bar{A})| \geq 2 \alpha(1-\alpha) 2^{n}
$$

Proof. Let

$$
f_{A}(x)= \begin{cases}-1 & x \in A \\ +1 & x \notin A .\end{cases}
$$

Then

$$
\begin{aligned}
\operatorname{Var}\left(f_{A}\right) & =\mathbb{E}\left[f_{A}^{2}\right]-\left(\mathbb{E}\left[f_{A}\right]\right)^{2} \\
& =1-(\alpha \cdot(-1)+(1-\alpha) \cdot 1)^{2} \\
& =4 \alpha(1-\alpha) .
\end{aligned}
$$

On the other hand,

$$
\mathbb{I}(f)=\frac{|E(A, \bar{A})|}{2^{n-1}},
$$

so we have

$$
|E(A, \bar{A})| \geq 2^{n-1} \cdot 4 \alpha(1-\alpha) .
$$

Here is a much sharper (for $\alpha \ll 1 / 2$) isoperimetric inequality that we will not prove.
Theorem 1.2 (Harper). If $|A|=\alpha \cdot 2^{n}$. Then

$$
|E(A, \bar{A})| \geq \alpha \cdot \log _{2}(1 / \alpha) \cdot 2^{n} .
$$

1.3 Noise stability and sensitivity

We will apply noise independently to all coordinates according to a parameter that we will vary.

Definition 1.1. Let $\rho \in[-1,1]$. For a fixed $x \in\{ \pm 1\}^{n}$, we write $Y \sim N_{p}(x)$ to be the random variables such that for each $i \in[n]$, independently,

$$
Y_{i}= \begin{cases}x_{i} & \text { with probability } \frac{1+\rho}{2} \\ -x_{i} & \text { with probability } \frac{1-\rho}{2}\end{cases}
$$

When $\rho=1$, there is no noise. When $\rho=-1$, we flip every bit. And when $\rho=0$, we ignore the input altogether.
Definition 1.2. The random variables (X, Y) are a ρ-correlated pair if we can sample them as follows:

1. Pick $X \sim\{ \pm 1\}^{n}$ uniformly at random.
2. Pick $Y \sim N_{\rho}(X)$.

These have correlation ρ because for each x_{i},

$$
\mathbb{E}\left[x_{i} Y_{i}\right]=\left(\frac{1+\rho}{2}\right)-\left(\frac{1-\rho}{2}\right)=\rho .
$$

Remark 1.2. Alternatively, for any i independently, sample $\left(X_{i}, Y_{i}\right) \in\{ \pm 1\}^{2}$ with

$$
\mathbb{E}\left[X_{i}\right]=0, \quad \mathbb{E}\left[Y_{i}\right]=0, \quad \mathbb{E}\left[X_{i} Y_{i}\right]=\rho
$$

This shows that this definition is symmetric in X and Y.
Definition 1.3. The noise stability with parameter ρ is

$$
\operatorname{Stab}_{\rho}(f)=\mathbb{E}_{(X, Y) \rho \text { coord. }}[f(X) f(Y)]
$$

If f is boolean,

$$
\begin{aligned}
\operatorname{Stab}_{\rho}(f) & =\mathbb{P}(f(X)=f(Y))-\mathbb{P}(f(X) \neq f(Y)) \\
& =2 \mathbb{P}(f(X)=f(Y))-1 \\
& =1-2 \mathbb{P}(f(X) \neq f(Y))
\end{aligned}
$$

Example 1.1. The noise stability of a dictator function is

$$
\begin{aligned}
\operatorname{Stab}_{\rho}\left(\chi_{i}\right) & =\mathbb{E}_{(X, Y) \rho \text { coord. }}[\chi(X) \chi(Y)] \\
& =\mathbb{E}\left[X_{i} Y_{i}\right] \\
& =\rho .
\end{aligned}
$$

Example 1.2. The noise stability of the parity function is

$$
\operatorname{Stab}_{\rho}\left(\operatorname{Parity}_{n}\right)=\mathbb{E}_{(X, Y) \rho \text { coord. }}\left[\prod_{i=1}^{n} X_{i} \cdot \prod_{i=1}^{n} Y_{i}\right]
$$

Since $\left(X_{i}, Y_{i}\right)$ is independent of $\left\{\left(X_{j}, Y_{j}\right)\right\}_{j \neq i}$,

$$
\begin{aligned}
& =\prod_{i=1}^{n} \mathbb{E}_{(X, Y) \rho \text { coord. }}\left[X_{i} Y_{i}\right] \\
& =\rho^{n} .
\end{aligned}
$$

Here is a theorem we will prove later.

Theorem 1.3.

$$
\lim _{n \rightarrow \infty} \operatorname{Stab}_{\rho}\left(\operatorname{MAJ}_{n}\right)=\frac{2}{\pi} \arcsin (\rho) .
$$

It may be easier to think of this in terms of noise sensitivity.
Definition 1.4. For $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ and $\delta \in[0,1]$, pick $X \sim\{ \pm 1\}^{n}$, and pick Y by flippiing each bit of X with probability δ, independently. Then the noise sensitivity of f is

$$
\operatorname{NS}_{\delta}(f)=\mathbb{P}(f(X) \neq f(Y))
$$

This is just a reparametrization of noise stability, and such a pair (X, Y) is $1-2 \delta$ correlated:

Proposition 1.1.

$$
\operatorname{NS}_{\delta}(f)=\frac{1}{2}-\frac{1}{2} \operatorname{Stab}_{1-2 \delta}(f) .
$$

Rephrasing the theorem, we get

Theorem 1.4.

$$
\mathrm{NS}_{\delta}\left(\mathrm{MAJ}_{n}\right)=O(\sqrt{\delta})
$$

Remark 1.3. This is also true for any linear threshold function. We will prove this later.

1.4 The noise operator and Fourier representation for stability

Definition 1.5. The noise operator T_{ρ} with parameter $\rho \in[-1,1]$ maps $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$ to $T_{\rho} f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$ by

$$
T_{\rho} f(x)=\mathbb{E}_{Y \sim N_{\rho}(x)}[f(Y)] .
$$

This is a way to "smooth out" a boolean function. Let's find a Fourier representation for $T_{\rho} f$:

Proposition 1.2.

$$
T_{\rho} f=\sum_{S \subseteq[n]} \widehat{f}(S) \cdot \rho^{\mid} S \mid \cdot \chi_{S} .
$$

Compare this to

$$
f=\sum_{S \subseteq[n]} \widehat{f}(S) \cdot \chi_{S} .
$$

Proof. Observe that T_{ρ} is a linear operator, so it suffices to prove this claim for $f=\chi_{S}$. Indeed,

$$
\begin{aligned}
T_{\rho} \chi_{S}(x) & =\mathbb{R}_{Y \sim N_{\rho}(x)}\left[\chi_{S}(Y)\right] \\
& =\mathbb{E}_{Y \sim N_{\rho}(x)}\left[\prod_{i \in S} Y_{i}\right] \\
& =\prod_{i \in S} \mathbb{E}\left[Y_{i}\right] \\
& =\prod_{i \in S} \underbrace{\mathbb{E}\left[Y_{i} x_{i}\right]}_{\rho} x_{i} \\
& =\rho^{|S|} \chi_{S}(x) .
\end{aligned}
$$

This gives us a Fourier representation for stability.
Corollary 1.2 .

$$
\operatorname{Stab}_{\rho}(f)=\sum_{S \subseteq[n]} \widehat{f}(S)^{2} \rho^{|S|}
$$

Proof.

$$
\begin{aligned}
\operatorname{Stab}_{\rho}(f) & =\mathbb{E}_{(X, Y) \rho \text { coord. }}[f(X) f(Y)] \\
& =\mathbb{E}_{X \sim\{ \pm 1\}^{n}}\left[f(X) \mathbb{E}_{Y \sim N_{\rho}(X)}[f(Y)]\right] \\
& =\mathbb{E}_{X \sim\{ \pm 1\}^{n}}\left[f(X) \cdot T_{\rho} f(X)\right]
\end{aligned}
$$

Using Plancherel's identity,

$$
\begin{aligned}
& =\sum_{S \subseteq[n]} \widehat{f}(S) \cdot \widehat{T_{\rho} f}(S) \\
& =\sum_{S \subseteq[n]} \widehat{f}(S)^{2} \rho^{|S|}
\end{aligned}
$$

Remark 1.4. Which functions maximize $\operatorname{Stab}_{\rho}(f)$? This are the constant functions. But if we want to maximize Stability under "balanced" functions, we look to dictator functions: Assuming $\widehat{f}(\varnothing)=0$ and $\rho \geq 0$,

$$
\begin{aligned}
\operatorname{Stab}_{\rho}(f) & =\sum_{\varnothing \neq S \subseteq[n]} \widehat{f}(S)^{2} \rho^{|S|} \\
& \leq \sum_{\varnothing \neq S \subseteq[n]} \widehat{f}(S)^{2} \cdot \rho \\
& =\rho \underbrace{\sum_{\varnothing \neq S \subseteq[n]} \widehat{f}(S)^{2}}_{\varnothing=1} \\
& =\rho .
\end{aligned}
$$

Equality is only when the Fourier coefficients are 0 for sets of size >1, so f must be a dictator function.

1.5 Arrow's theorem

Suppose we want to pick between three alternatives, so everyone will have a preference list. We want the following properties:

1. Independence of irrelevant alternatives (IIA): Changing our opinion about c doesn't affect our ranking of a vs b.
2. Unanimous: If everyone prefers $a>b$, then society prefers $a>b$.
3. Rationality/no cycles: No $a>b, b>c, c>a$.

From property 1, we can model this as $\binom{3}{2}$ pairwise elections.

Example 1.3.

	Voter 1	Voter 2	Voter 3	Society
$a>b>c$	$b>c>a$	$c>a>b$		
$a(+1)$ vs $b(-1)$	+1	-1	+1	$f(x)$
$b(+1)$ vs $c(-1)$	+1	+1	-1	$g(y)$
$c(+1)$ vs $a(-1)$	-1	+1	+1	$h(z)$

We can see already that majority rule can't satisfy these three properties. Also note that each column cannot have all +1 or all -1

Theorem 1.5 (Arrow). The only rule that satisfies 1, 2, and 3 is when $f=g=h=\chi_{i}$.
Arrow did a reduction from the 3 function version to the 1 function version. We will just treat this case. Kalai proved a robust version of Arrow's theorem.

Theorem 1.6 (Kalai).

$$
\mathbb{P}_{X, Y, Z}(f(X), f(Y), f(Z) \text { is rational })=\frac{3}{4}-\frac{3}{4} \operatorname{Stab}_{-1 / 3}(f) .
$$

We will prove Kalai's theorem next time. Here is how this implies Arrow's theorem:
Corollary 1.3. If $\mathbb{P}_{X, Y, Z}(f(X), f(Y), f(Z)$ is rational $)=1$, then $f=\chi_{i}$ or $f=-\chi_{i}$.
Proof. Kalai's theorem implies that

$$
\operatorname{Stab}_{-1 / 3}(f)=-1 / 3 .
$$

Now, in general,

$$
-\operatorname{Stab}_{-1 / 3}(f)=-\sum_{S} \widehat{f}(S)^{2}(-1 / 3)^{|S|} \leq \sum_{|S| \text { odd }} \widehat{f}(S)^{2} \cdot\left(\frac{1}{3}\right)^{|S|} \leq \frac{1}{3}
$$

with equality if and only if $\sum_{|S|=1} \widehat{f}(S)^{2}=1$. So f must be a dictator function.

